After laying to rest its pacifist post-World War II posture since the government of Prime Minister Shinzo Abe came to power, Japan has its eyes set on matching if not overtaking the United States and Europe in aerospace and defense technology.
The setting up of the Boei Sobi-cho or Acquisition, Technology and Logistics Agency (ATLA) in 2015 set the trend for the future course of Japan’s defence manufacturing and technology. The ALTA’s statement of objectives says it all: “In order to secure technological superiority under the increasingly severe security environment surrounding Japan, ATLA will grasp trends in advanced technologies, …cooperate with various R&D organizations within Japan and overseas, apply advanced dual-use technologies, and enhance technological capabilities through R&D projects. Also ATLA will reflect operational needs of Japanese Self Defence Force (JSDF) in every stage of defense equipment acquisition through project management.”
Since then the ALTA has embarked on a number of programs covering land, sea and air. Harnessing local expertise and its partnership with American and European defence firms and research agencies, the ALTA has drawn up an ambitious road-map to master aviation and defence technology over the next 10-20 years.
Stealth aircraft program
The ALTA has revealed the details of a future fighter jet replete with futuristic technologies such as “superior stealth, networked shooting and slim thrust-vectoring engine.” These program highlights put it in the league of the US-F-35 and F-22, and future programs such as the UK’s Tempest and the European Future Combat Air System (FCAS).
In March 2020, Japan revealed the concept of its Mitsubishi F-X fighter jet project rivaling the F-22 Raptor in size and performance. Some of the key technologies under development are highlighted below:
Network shooting: The F-X will feature “network shooting” using an Integrated Fire Control for Fighter (IFCF) system which is under development.
With this capability, air-to-air combat beyond visual range is expected to become highly effective, since each of fighter can be free from positional and directional constraints by switching or by sharing missile shooting process among a fighter formation. IFCF system consists of high-speed intra-formation datalink subsystem, fire control computer and software.
The prototype of IFCF software has been tested and modified through the pilot-in-the-loop simulations, which demonstrate the effectiveness of network shooting under various situations, such as air defense operations in a quantitatively disadvantageous manner. Prototyping of intra-formation datalink subsystem is now undergoing, and will be verified in the flight test.
Stealth: The internal weapon bay system and the stealth intake duct are effective measures to reduce radar reflection from externally carried weapons and engine inlet, respectively. Other technologies, the lightweight airframe structure and the electric actuation system are also required to realize the stealth fighter.
Air Systems Research Center (ASRC), which is part of the ATLA, has developed ground-based prototype of an internal weapon bay system with an air-to-air missile launcher. Safe and quick sequences of door-open, weapon-separation, and door-close were successfully demonstrated through ground tests under various simulated flight conditions.